SISTEMA DIÉDRICO
Estudio del Plano

Después del estudio del punto y de la recta el siguiente elemento a estudiar es el plano.

Los planos los denominaremos con letras griegas, α, β, δ, ... etc. y según la geometría Euclidiana un plano estará de finado en alguno de los siguientes casos:
- Por tres puntos no alineados.
- Por una recta y un punto exterior
- Por dos rectas convergentes, en un punto propio (rectas secantes) o en un punto impropio (rectas paralelas).

En el sistema diédrico la forma más usual de representar el plano es dos rectas singulares del mismo, las rectas de intersección del plano con los planos de proyección, PH y PV, estas rectas las denominamos trazas del plano y son dos rectas que convergen en la LT.

En la figura -1- se ha representado un plano, α₁, por sus trazas α₁ y α₂. No se debe olvidar que son rectas contenidas en los planos de proyección y todos sus puntos tienen una proyección en la LT y la otra sobre ellas. En la figura -2- se han representado las trazas del plano anterior y dos puntos H, de la traza horizontal, α₁, y V de la traza vertical, α₂.

NOTA: Se debe recordar que son dos rectas diferentes una proyección es esta sobre ella y la otra en la LT, no son las proyecciones de una misma recta.

Tercera traza-Traza de Perfil

A veces, para el estudio de determinados planos, debemos recurrir a su intersección con un plano de perfil; en estos casos obtendremos una tercera traza con este plano, la denominamos traza de perfil o traza tercera y la distinguimos con el subíndice 3.

En el ejemplo de la figura -3- se ha representado un plano, β₁, y las tres trazas con cada uno de los planos, β₁₁, β₂ y β₃.

En la parte inferior se ha realizado su representación en proyección diédrica.

NOTA: Se debe recordar que las tres rectas son rectas singulares, β₁₁, es una recta del plano horizontal, β₂₂, es una recta del plano vertical, y β₃₃, es una recta del plano de perfil.
SISTEMA DIÉDRICO
Estudio del Plano

Rectas y Puntos del plano
Condiciones de pertenencia

Una recta pertenece a un plano cuando todos sus puntos están en el plano, la condición necesaria y suficiente es que dos de sus puntos sean del plano.

Cuando representamos al plano por sus trazas las rectas del plano tendrán sus trazas contenidas en las trazas del plano lugo para que una recta pertenezca a un plano debe tener las trazas en las trazas hormónicas del plano.

En las figuras -1- y -2-, hemos representado una recta r del plano α, tiene su traza V en α₂ y su traza H en α₁.

De la misma manera para que un plano contenga a una recta basta con que las trazas del plano contengan a las trazas de la recta.

Para que un punto pertenezca a un plano es necesario que el punto pertenezca a una recta del plano.

El punto P, representado está en una recta r, del plano α₂, luego es un punto del plano.

Plano determinado por tres puntos A, B y C, no alineados

Dadas las proyecciones de tres puntos A, B y C, no alineados, vamos a hallar las trazas del plano que determinan:

1.- Pasamos una recta b, por los puntos A y C y una recta c, por los puntos A y B. Si el plano contiene a los puntos contendrá a las rectas que pasan por ellos.

2.- Hallamos las trazas de estas rectas, Hc, Hb, Vc y Vb, si el plano contiene a las rectas, su traza horizontal contendrá a las trazas horizontales de las rectas y la vertical a las verticales.

3.- Trazamos β₁, pasando por H'c y H'b y β₂ pasando por V''c y V''b y tenemos solucionado el problema.

Nota: Debemos comprobar que las trazas del plano se cortan en la línea de tierra, LT.

I.E.S. Las Salinas de Laguna de Duero DIBUJO TÉCNICO Departamento de AA. PP.
SISTEMA DIÉDRICO
Estudio del Plano

Plano determinado por dos rectas a y b, que se cortan

Dadas las proyecciones de dos rectas a y b, que se cortan en un punto P, vamos a hallar las trazas del plano que determinan:

1.- En la figura -1- tenemos representadas dos rectas, a y b, que convergen en un punto P.
2.- Hallamos las trazas de estas rectas, Hα, Hβ, Va y Vb, como en el ejemplo anterior, si el plano contiene a las rectas, su traza horizontal contendrá a las trazas horizontales de las rectas y la vertical a las verticales.
3.- Trazamos α₁, pasando por Hα y Hβ y, α₂, pasando por Vα y Vb y hemos vuelto a solucionar el problema.

Nota: Debemos comprobar que las trazas del plano se cortan en la línea de tierra, LT.

Plano determinado por una recta a y un punto P, exterior

Dadas las proyecciones de una recta a y un punto P, exterior a la recta, vamos a hallar las trazas del plano que determinan:

1.- En la figura -1- tenemos representadas la recta, a y el punto P, por sus respectivas proyecciones.
2.- Podemos hacer dos cosas: buscar un punto de la recta a y unirlo con P de forma que tenemos dos rectas convergentes en A (caso anterior) o trazar una recta b, por el punto P, paralela a la recta a (tiene las proyecciones homónimas paralelas). En la figura -2- hemos realizado la segunda opción, hallamos las trazas de estas rectas, Hα, Hβ, Va y Vb, como en el ejemplo anterior, si el plano contiene a las rectas, su traza horizontal contendrá a las trazas horizontales de las rectas y la vertical a las verticales.
3.- Trazamos β₁, pasando por Hα y Hβ y, β₂, pasando por Vα y Vb y hemos vuelto a solucionar el problema.
SISTEMA DIÉDRICO

Estudio del Plano

Rectas Notables del plano

HORIZONTALES DEL PLANO

Son las rectas del plano paralelas al plano horizontal PH. Del estudio de las figuras de la izquierda se deduce:

1. - Sólo tienen traza vertical y estarán en α₁, por ser rectas del plano.
2. - Su proyección horizontal h, es paralela a la traza α₁, que es otra horizontal del plano.
3. - La proyección vertical h” paralela a la LT, por ser una recta horizontal.

Regla nemotécnica:

Las **RECTAS HORIZONTALES** del plano tienen la proyección vertical (de nombre contrario) paralela a la LT, y la proyección horizontal paralela a su traza horizontal.

FRONTALES DEL PLANO

Son las rectas del plano paralelas al plano vertical PV. Del estudio de las figuras de la izquierda se deduce:

1. - Sólo tienen traza horizontal y estarán en α₂, por ser rectas del plano.
2. - Su proyección vertical f” es paralela a la traza α₂, que es otra frontal del plano.
3. - La proyección horizontal f es paralela a la LT, por ser una recta frontal.

Regla nemotécnica:

Las **RECTAS FRONTALES** del plano tienen la proyección horizontal (de nombre contrario) paralela a la LT, y la proyección vertical paralela a su traza vertical.

Corporación Académica de las Salinas de Laguna de Duero _DIBUJO TÉCNICO_

Departamento de AA.PP.
SISTEMA DIÉDRICO
Estudio del Plano
Rectas Notables del plano

RECTAS DE MÁXIMA PENDIENTE
Se denominan rectas de máxima pendiente a las rectas del plano que forman el mayor ángulo con el plano horizontal, (aunque aún no lo hayamos estudiado es el ángulo que forma la recta y su proyección horizontal), se caracterizan por:
1.- Son perpendiculares a la traza horizontal, m es perpendicular a δ_1.
2.- Su proyección horizontal m' también es perpendicular a la traza horizontal, δ_1, y así se ven al estar en el PH.
3.- Se las distingue colocando dos trazos perpendiculares a su proyección horizontal.
4.- Todas las rectas de máxima pendiente son paralelas entre sí y con una de ellas queda definido el plano.

RECTAS DE MÁXIMA INCLINACIÓN
Se denominan rectas de máxima inclinación a las rectas del plano que forman el mayor ángulo con el plano vertical, (aunque aún no lo hayamos estudiado es el ángulo que forma la recta y su proyección vertical), se caracterizan por:
1.- Son perpendiculares a la traza vertical, n es perpendicular a γ_2.
2.- Su proyección vertical n'' también es perpendicular a la traza vertical, γ_2, y así se ven al estar en el PV.
3.- Se las distingue colocando dos trazos perpendiculares a su proyección vertical.
4.- Todas las rectas de máxima inclinación son paralelas entre sí y con una de ellas queda definido el plano.
SISTEMA DIÉDRICO

Estudio del Plano

Planos Singulares

Posiciones del plano

Planos Proyectantes

Se denominan planos proyectantes a los planos perpendiculares a los planos de proyección, luego tendremos:

- **PROYECTANTES HORIZONTALES**
 Son los planos perpendiculares al PH, se caracterizan por tener su traza vertical perpendicular a la LT. En la figura -1- hemos representado en el espacio y en el sistema diédrico un plano α, proyectante horizontal. Todo lo que contiene en este caso una recta horizontal h, se proyecta horizontalmente en su traza horizontal α, se confunde en ella, por eso se denomina proyectante horizontal.

- **PROYECTANTES VERTICALES**
 Son los planos perpendiculares al PV se caracterizan por tener su traza horizontal perpendicular a la LT. En la figura -2- hemos representado en el espacio y en el sistema diédrico un plano β, proyectante vertical. Todo lo que contiene en este caso una recta frontal f, se proyecta verticalmente en su traza vertical β, se confunde en ella, por eso se denomina proyectante vertical.

- **PERPENDICULARES AL DE PERFIL**
 Estos planos además de ser perpendiculares al Plano de Perfil son paralelos a la LT, se caracterizan por tener sus trazas, horizontal y vertical, paralelas a la LT. En la figura -3- hemos representado en el espacio y en el sistema diédrico un plano δ, perpendicular al de perfil. Todo lo que contiene en este caso una recta r, tiene su tercera proyección r", confundida en su traza de perfil δ.
SISTEMA DIÉDRICO
Estudio del Plano
Planos Singulares
Posiciones del plano -2-

Planos Paralelos a los de Proyección
También son planos proyectantes los planos paralelos a los planos de proyección, son paralelos a un plano y perpendiculares al otro plano, tendremos:

- PLANOS HORIZONTALES
Son los planos paralelos al PH se caracterizan por tener solamente la traza vertical paralela a la LT. En la figura -1- hemos representado en el espacio y en el sistema diédrico un plano α, paralelo al horizontal; todas sus rectas son horizontales, h, se proyectan confundidas en la traza vertical α₂.

- PLANOS FRONTALLES
Son los planos paralelos al PV se caracterizan por tener solamente la traza horizontal paralela a la LT. En la figura -2- hemos representado en el espacio y en el sistema diédrico un plano β, paralelo al plano vertical. Todas sus rectas son rectas frontales, f, se proyectan confundidas en la traza horizontal β₁.

- PLANOS de PERFIL
Son los planos perpendiculares a la LT, por lo tanto perpendiculares a los dos planos de proyección. Todo lo que contienen se confunde en sus trazas horizontal y vertical y para su estudio es preciso recurrir a la 3° proyección. Todas sus rectas son de perfil.

- PLANOS que contienen a la LT
Estos planos tienen las dos trazas confundidas en la LT, se las distingue con dos trazos. Para su correcta definición es preciso determinar, además un punto P del plano o jugar con su traza de perfil. En la figura -3- se ha representado un plano δ de estas características y una recta r de este plano.
SISTEMA DIÉDRICO
Posiciones del plano -Resumen-

δ, Plano de Perfil
χ, Plano Proyectante vertical
 β, Plano Proyectante horizontal
α, Plano Oblíquo

c, recta frontal de este plano
b, recta horizontal de este plano
a, recta horizontal

η, Contiene a la L. de Tierra (Perpendicular al P.P.)
γ, Paralelo a la L. de Tierra (Perpendicular al P.P.)
ϕ, Paralelo al P. Vertical (Proyectante horizontal)
ε, Paralelo al P. Horizontal (Proyectante vertical)
SISTEMA DIÉDRICO
Estudio del Plano
Trazas con los Bisectores

Además de las trazas con los planos de Proyección, α₁ y α₂ nos puede resultar muy interesante hallar las rectas de Intersección del plano con los planos bisectores, las denominaremos trazas con los bisectores, m a la traza con el 1º y n a la traza con el 2º Bisector. El procedimiento para hallar estas trazas a partir de las del plano es muy sencillo:

- El punto P de intersección de las trazas del plano con la LT es un punto de las trazas con los Bisectores, dado que éstos pasan por la LT, ya tenemos un punto de cada una, vamos a hallar el otro, necesario para definir una recta.
- Trazamos una recta r del plano, puede ser una horizontal o una frontal, en la figura -2- hemos trazado una recta oblicua, y hallamos sus trazas MN con los bisectores.
- Por los puntos P y M pasaría la recta m, traza con el 1º Bisector, y por los puntos P y N pasaría la recta n, traza con el 2º Bisector.

Figuras Planas

Aunque más adelante hagamos un estudio más detallado de las figuras contenidas en un plano, figuras planas vamos a adelantar algunos casos sencillos:

- Cuando el plano es paralelo a uno de los de proyección vernos la figura en verdadera forma y magnitud en la proyección correspondiente y confundida con la traza en la otra proyección:
- En la figura -3- hemos representado un cuadrado ABCD, contenido en un plano horizontal, su proyección horizontal será otro cuadrado ABꞌCꞌDꞌ del mismo lado. Su proyección vertical está confundida con la traza α₂.

- En la figura -4- el plano es paralelo al vertical hemos dibujado una circunferencia de centro Q y diámetros AB y CD, su proyección vertical es otra circunferencia de centro Qꞌ y diámetros ABꞌ y CꞌDꞌ, iguales a los primitivos, vemos que la proyección horizontal está confundida en su traza horizontal β₁.
SISTEMA DIÉDRICO
Estudio del Plano
Figuras Planas

En las siguientes figuras vamos a estudiar las relaciones existentes entre las proyecciones de una figura plana, cuando el plano es oblicuo.

- Partimos de la proyección horizontal de un triángulo \(A'B'C' \) contenido en un plano \(\alpha \). Figura 1.

- Hallamos las trazas de las rectas que contienen a sus lados \(b' \) y \(c' \) y obtenemos sus proyecciones verticales \(b'' \) y \(c'' \), sobre estas proyecciones situamos \(A'' \), \(B'' \) y \(C'' \). Figura 2.

- Si prolongamos las proyecciones de la recta \(b \) vemos que se encuentran en el punto \(N \) \((N', N'') \). traza con el 2° bisector, obtenemos la recta \(n \) \((n', n'') \) donde se encuentran todas las rectas del plano. Luego, entre las dos proyecciones de una figura plana se establece una afinidad, de dirección perpendicular a \(LT \) y eje la traza con el 2° bisector. Figura 3.

Cuando las figuras planas tienen lados paralelos a las trazas nos será más fácil recurrir a rectas horizontales y a rectas frontales del plano.

En nuestro ejemplo de la figura 4, partimos de la proyección vertical \(\{A''B''C''D''\} \) de un paralelogramo que tiene dos lados \(A'B'' \) y \(C'D'' \) paralelos a \(LT \) y dos lados \(A'D'' \) y \(B'C'' \), paralelos a la traza vertical del plano \(\beta \).

La proyección horizontal se ha obtenido utilizando dos rectas horizontales, con sus trazas verticales en la traza \(\beta \) y con dos rectas frontales con sus trazas horizontales en \(\beta \). Figura 5.

Además se sigue cumpliendo:
Entre las dos proyecciones de la figura hay una afinidad de dirección perpendicular a \(LT \) y eje la traza del plano con el 2° bisector.